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We describe a mutual synchronization mechanism observed in a model of fiber laser arrays. Though sub-
optimal in terms of total coherent power, the weak-link-synchronized state is far more robust than the in-phase
state of a uniformly pumped array, with respect to parameter mismatch among the individual elements. We find
similar dynamical behavior in a more general system of coupled oscillators where the amplitude dynamics is
crucial.
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I. INTRODUCTION

The subject of synchronization in nonlinear oscillator ar-
rays has received a great deal of attention �1–3�. Besides its
intrinsic interest for the field of nonlinear dynamics, the goal
of synchronization is important in many practical contexts.
In some cases, the desired behavior can be achieved by so-
called injection locking, so that �for example� a generator is
entrained by a controlled external signal which is weak but
very precise �1�. In contrast to this master-slave situation
there is the problem of mutual synchronization among a
population of nominally identical oscillators, of which the
Kuramoto model is the archetype �4�.

In this paper, we describe a kind of mutual synchroniza-
tion which occurs in a model of high-gain and high-loss fiber
lasers. Typically, the search for highly coherent output states
considers schemes where the individual elements are as iden-
tical as possible and driven identically �5�. In contrast, we
investigate arrays where such uniformity is intentionally
avoided by driving some elements more strongly than others.
We find that these inhomogeneous arrays can operate in a
highly coherent way via a mechanism we call weak-link syn-
chronization. The weak-link-synchronized states, though
suboptimal compared with the uniformly pumped array, is
far more robust with respect to parameter mismatch among
the individual elements. The practical advantage of weak-
link synchronization may therefore be especially pronounced
for very large arrays.

Weak-link synchronization represents a trade-off between
optimization in principle and optimization in practice. In
principle, a fully symmetric coherent inphase state is ideal.
In practice, it may be difficult to achieve the necessary tol-
erances. We find that employing a strategy of intentionally
nonuniform �but patterned� driving yields an attractor with
both a high degree of coherence and robustness under param-
eter mismatch. Our numerical simulations suggest that the
scheme can be applied to very large arrays without substan-
tial degradation.

II. BACKGROUND

Our starting point is a model recently developed to
describe coupled fiber lasers in the high-gain and high-loss
limit. A detailed derivation of these may be found in Ref. �6�.
For our purposes, each fiber may be considered to be a light
tube with a short-gain region, with one end perfectly
reflecting and the other poorly reflecting. The latter feature is
responsible for describing the dynamics as an iterative
map rather than a system of differential equations: the elec-
tric field may change rapidly between consecutive round-
trips, so the standard slowly varying wave approximation
�SVWA� is not valid �7�. The fibers interact over a short
length by passing through a coupler which mixes the fields.
The dynamical model describing the evolution over one
round-trip of the complex electric fields En and the real gains
Gn is �6�

En�t + T� = r�
m=1

N

e�Gn�t�+Gm�t��/2SnmEm�t� , �1�

Gn�t + T� = Gn�t� + ��Gn
p − Gn�t� − 2�1 − e−Gn�t���En�t��2� .

�2�

Here, Snm is a coupling matrix, whose elements depend on
the architecture and properties of the coupler, r is the reflec-
tion coefficient, Gn

p is the pumping parameter, and � is the
ratio of the round-trip time T to the fluorescence time. In
practice, � is very small �say, 10−4�, while r is on the order of
20%. The derivation of the dynamical model is broad enough
to cover a variety of physical coupling mechanisms; in what
follows, we consider coupling via classical “cross talk” be-
tween packed fibers �8�.

Ultimately, one would like to identify the conditions �if
any� under which very large arrays will be behave in a highly
coherent manner. The most common strategy is to consider a
system of identical elements, identically driven and with
fully symmetric coupling, and then explore the linear stabil-
ity of the fully symmetric solution in which all elements
behave identically �9�. We take a different approach, since*Electronic address: dtsygank@umd.edu
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we want to look more broadly at other types of synchronized
solutions and test their sensitivity with respect to disordering
effects �such as detuning�.

In fact, the case of just two elements yields important
insight, and our present analytic understanding of weak-link
synchronization rests on a careful analysis of the N=2 prob-
lem. This case yields the simplest incarnation of the weak-
link idea and demonstrates the relative pros and cons of
weak-link-synchronized states as compared with the in-phase
states of the uniformly driven array. Later, we use this insight
to design arrays with much larger N and explore these
numerically.

III. ANALYSIS FOR TWO LASERS

In this case the coupling matrix elements are �8�

S11 = S22
* = cos�p� − i sin�q�sin�p� ,

S12 = S21 = − i cos�q�sin�p� ,

q = arctan
�

�
, p = 2zc

��2 + �2, � =
�1 − �2

2
,

where �n is the propagation constant of the nth fiber, �
is the coupling constant, and zc is the length of the coupler.
The quantity q corresponds to a detuning parameter, while
p is a measure of the coupling strength. In what follows,
we consider the physically typical case where the latter is
small.

Let En�t�=�n�t�ei�n�t�, where �n and �n are real. We seek
solutions for which ��t�=�1�t�−�2�t� is constant. We do not
require that the lasers be pumped identically, viewing G1

p and
G2

p as independent control parameters. Meanwhile, any in-
trinsic disorder in the system is due to a nonzero value of the
detuning parameter q.

Consider first the limit where there is no detuning �q=0�.
A straightforward �if somewhat tedious� calculation yields
several constant-� solutions. The overall situation is illus-
trated in Fig. 1. The first branch of solutions �see the Appen-
dix� exists only within a narrow strip of parameter space
corresponding to nearly identically pumped lasers. It is natu-
ral therefore to introduce a small parameter � to express
these solutions: we have

� = arcsin��/tan p� + O��2� ,

�1
2 = �2

2 = I + O��2� ,

G1 = G0 + � + O��2� ,

G2 = G0 − � + O��2� , �3�

where �= �G1
p−G2

p� /2�1+2rI�, I= �Gp−G0� /2�1−r�,
Gp= �G1

p+G2
p� /2, and G0=−ln r.

This is the synchronized solution corresponding to states
where both lasers operate with �nearly� equal and optimal
intensity and a constant phase difference. If the lasers are
identically pumped, these states are the familiar in-phase and

antiphase states �=0 and �, respectively, described, e.g., for
coupled semiconductor lasers in Ref. �10�.

A careful analysis shows that this solution is attracting in
its narrow region of existence as long as

0 	 I 	 Im � 1/�4 − 6r

	or equivalently G0 	 Gp 	 Gm � G0 +
1 − r

2 − 3r



and

p�cos �� 	��

2
	1 −

I

Im

 .

Now suppose we allow for a small amount of detuning
�q�0� to find the corresponding corrections to this solution.
Of particular importance is the correction to the relative
phase, which is

sin��� =
G1

p − G2
p

2p�1 + 2rI�
−

q�Gp − G0�
p�1 + 2rI�cos �

.

Recall that p represents the coupling strength, which is a
small quantity. It is evident that these solutions are very sen-
sitive to parameter mismatch and might be difficult to ob-
serve in practice. All of the foregoing refers to the fixed
points labeled B in Fig. 1.

Now consider another set of fixed point solutions, labeled
A in Fig. 1. These are given by �in the limit of zero
detuning�

� = �/2, � = − �/2,

�1 = �I1 + O�p2�, �1 = p
�rI2 exp G1

p

1 − r exp G1
p + O�p2� ,

�2 = p
�rI1 exp G2

p

1 − r exp G2
p + O�p2�, and �2 = �I2 + O�p2� ,

FIG. 1. Schematic summarizing the regions of stability for
the various fixed point solutions: A: weak link solutions. B:
well-pumped solutions, Eq. �12�. C: near-threshold transitional
solutions.
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G1 = G0 + O�p2�, G1 = G1
p + O�p2� ,

G2 = G2
p + O�p2�, G2 = G0 + O�p2� .

The corresponding regions of stability are, respectively,

G0 	 G1
p 	 Gm, and 0 	 G1

p 	 G0,

0 	 G2
p 	 G0, G0 	 G2

p 	 Gm.

These solutions correspond to a state where one laser is well
pumped �Gp
G0� and operates with relatively large inten-
sity, while the other laser is underpumped �Gp	G0� and has
a very small amplitude �of order of p�. Even so, these are
synchronized states because the two lasers maintain a
constant-� /2-phase shift. For reasons that will become clear
when we turn to larger arrays, we call this the “weak-link
solution.” The fact that the underpumped laser has nonzero
intensity is important, because it is how phase information is
transmitted across larger arrays.

Although the total intensity of the weak-link solution
is less than the intensity of the “fully pumped” branch
of solutions, the weak-link solution has significant benefits:
�1� it has a very broad region of existence and stability,
and �2� it is extraordinarily robust to parameter mismatch.
Corrections to first order in q do not have any serious
influence on this solution, in contrast to the fully pumped
solution. In particular, the phase difference is only slightly
modified:

� = ± 	�

2
+

rpq

exp�− Gp� − r

 .

There is yet one more fixed point solution, which is
labeled C in Fig. 1. However, its region of stable existence
is extremely small and we do not consider it further. For
completeness, we display this solution in the Appendix. It
may hold some mathematical interest, in some sense provid-
ing a continuous transition between the other solution
branches.

Formally, the oscillations of the underpumped laser exist
only due to the interaction with another laser, but we cannot
consider this system as a resonant driving of a dissipative
oscillator. First of all the interaction is produced through
cross talk, so that instead of direct driving, the well-pumped
laser works as an energy source for small self-sustained os-
cillations in the underpumped laser. Second of all, the well-
pumped laser is not an oscillator with a fixed frequency, but
a dynamical unit which also adjusts its rhythm in response to
the interaction with the weak one. This interpretation of the
system behavior as the synchronization phenomenon is espe-
cially important for understanding of the dynamics of larger
hybrid arrays. Indeed, if we assume that the underpumped
laser is just a passive driven oscillator and does not drive
back the well-pumped oscillator, then two well-pumped
lasers separated by the underpumped one �i.e., indirectly
coupled through the weak oscillator� would not be able to
synchronize. In the next section we show that this is not true
and that weak dynamical coupling �weak link� provides
strong and robust synchronization.

IV. MANY LASERS

The situation that we have just described suggests a
scheme for how one might try to synchronize a large array of
lasers if the uniformly pumped configuration is too sensitive
to be successfully synchronized. Suppose we have three la-
sers, with the outer two well pumped and the middle under-
pumped. If each of the well-pumped lasers easily synchro-
nizes with the underpumped one, then they will synchronize
with each other. Thus, by sacrificing the intensity of one
laser, one might robustly and effectively synchronize the
other two through a weak link, which would be otherwise
fail.

To test this idea, we consider first a linear array of
coupled fiber lasers and compare the configuration when all
the lasers are well pumped against the configuration when
every other laser is underpumped. For this and other large
arrays to follow, we use near-neighbor coupling to generate
the matrix elements Snm, as described in the Appendix. As a
convenient quantitative measure of the output, we use the
power spectrum of the total electric field:

P��� = ��
−�

�

Etot�t�ei�tdt�2

,

where

Etot = �
n

�n�t�ei�n�t�.

Figure 2 shows the results for an array of N=19 lasers.
We have introduced a small amount of intrinsic disorder
��
10−4�. The upper panel is the result when all lasers are
pumped with Gp=1.9; the lower panel is the result when we

FIG. 2. Power spectrum P��� for the linear array of 19 lasers
with near-neighbor coupling, with r=0.2, �=0.005, �
10−4,
�=0.015, and zc=1. Initial conditions were chosen randomly with
�n� �0,1�, �n� �0,2��, and Gn� �1.6,2.3�. The upper plot is for
the case when all lasers are strongly pumped, with Gp=1.9. The
lower plot is for the case when instead every other laser is under-
pumped, with Gp=0.4 �weak-link synchronization�.
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reduce the pump for nine of the lasers to Gp=0.4, a value
below the single-laser threshold value. The other parameters
are listed in the figure caption. Repeated trials indicate that
these results are independent of initial conditions. The uni-
formly pumped configuration does not generate a coherent
output; consequently, the contrast is considerably lower than
for the corresponding weak-link pumping scheme, whose
power spectrum has a single sharp line.

There are other strategies one can try to get the fully
pumped array to synchronize. For example, one can indi-
vidually trim the pump parameters of each laser in the hope
of somehow compensating for the intrinsic disorder. In fact,
we were unable to get anything even approaching the clean
output of the weak-link-synchronized state; there are reasons
to suspect that it is impossible in practice.

Yet another strategy is to change the topology of the
array—e.g., by introducing periodic boundary conditions.
This strategy works: a one-dimensional ring of these lasers
can robustly synchronize to a synchronized state. On the
other hand, using a ring architecture begs the question of still
larger arrays. After all, a large ring takes up a large cross-
sectional area, most of which is empty space. From the per-
spective of total power, a more attractive possibility is to use
a large bundle of fiber lasers. We consider, therefore, a
bundle comprising four concentric rings of 1, 6, 12, and 18
lasers. The resulting arrangement of 37 lasers is illustrated in
Fig. 3. In view of the robust synchronization of a single ring,
we choose for our weak-link configuration one where every
other ring is underpumped. We compare the output against
the output of the corresponding fully pumped configuration,
as shown in Fig. 4. In the well-pumped array we find no
synchronization; the other array readily falls into the weak-
link-synchronized attractor.

The same strategy works for even larger arrays. We have
observed robust weak-link synchronization in simulations
with as many as 91 elements �comprising 6 concentric rings�
with no apparent degradation.

V. GENERAL OSCILLATORS

Is the behavior of the fiber laser array unique, or is weak-
link synchronization a more general phenomenon? Most of
the principal ingredients of the laser system can be observed
in an archetypical model which describes a broad range of
physical problems. Consider the general equations of a chain
of coupled Hopf oscillators with slowly varying complex
amplitudes:

Ȧi = i�iAi + 
iAi − ��i + i�i��Ai�2Ai + �
j

Sij�Aj − Ai� .

For simplicity we restrict ourselves to nearest-neighbor
coupling Sij = i��� j,i+1+� j,i−1�, with the same nonlinear
frequency shift �i /�i�� for all oscillators. Introducing
real amplitudes and phases according to Ai= �ri /��i�ei�i,
we get

ṙi = 
iri − ri
3 + �ri−1 sin��i − �i−1� − �ri+1 sin��i+1 − �i� ,

�̇i = �i − �ri
2 − 2� + �

ri−1

ri
cos��i − �i−1� + �

ri+1

ri

�cos��i+1 − �i� .

Note that without coupling ��=0�, each oscillator obeys
the normal form equation for a supercritical Hopf bifurca-
tion: when 
	0 the origin r=0 is a stable spiral; when


0, there is an unstable spiral at the origin and a stable
circular limit cycle at r=�
.

For N=2 these equations show similar behavior to two
fiber lasers: if both oscillators are “turned on” �i.e., 
1,2
0�,
then they synchronize to each other in terms of frequency
entraining and constant phase difference only if the detuning
��= ��1−�2� and mismatch �
= �
1−
2� are small enough,
but if one of them is turned off �so 
1	0 and 
2
0�, then
they synchronize regardless of �� and �
, with the first

FIG. 3. Cross section of the 37-fiber system and the pumping
scheme used to achieve weak-link synchronization. Black and gray
circles represent the well-pumped and underpumped lasers,
respectively. FIG. 4. Same as Fig. 2 but for the two-dimensional �N=37�

array. The upper plot is for the all-pumped configuration; the lower
plot is for the weak-link arrangement.
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oscillator having very small �but nonzero� amplitude.
What happens to a linear array of these oscillators with

every other one underpumped—i.e., taking 
2i	0 and

2i+1
0 and some distribution of �i? Such a system indeed
synchronizes, though there are significant differences with
the laser system. First of all, even in the case of the weak-
link configuration the Hopf array is still sensitive to the
width of the natural frequency distribution, ��. Moreover,
for some small �� the configuration of all-turned-on oscil-
lators with close positive 
’s also readily synchronizes,
which was not the case for the fiber lasers. This means that
although weak-link synchronization occurs in the Hopf array,
it does not provide the obvious benefit of superior robustness
when compared against the conventional strategy of using
uniformly pumped arrays.

That said, we see that weak-link synchronization is not a
peculiar property of the fiber-laser system and may provide a
useful alternative scheme for synchronizing other nonlinear
oscillator arrays where conventional synchronization is
troublesome or elusive.
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APPENDIX

Fixed-point solutions

We provide details leading to the fixed-point solutions
quoted in the main text. For N=2, with En=�nei�n, we
seek solutions of Eqs. �1� and �2� with �n�t+T�=��t�,
�1�t+T�−�2�t+T�=�1�t�−�2�t�=�, and Gn�t+T�=Gn�t�. It
follows that

�1�2 cos � = r2eG1+G2�1�2 cos � , �A1�

�1�2 sin � = r2eG1+G2�1�2�cos2 p − sin2 p�sin �

+ re�G1+G2�/2�reG1�1
2 − reG2�2

2�sin p cos p ,

�A2�

�1
2 = r2e2G1�1

2 cos2 p + r2eG1+G2�2
2 sin2 p

− 2r2e�3G1+G2�/2�1�2 sin p cos p sin � , �A3�

�2
2 = r2e2G2�2

2 cos2 p + r2eG1+G2�1
2 sin2 p

+ 2r2e�G1+3G2�/2�1�2 sin p cos p sin � , �A4�

G1 = G1 + ��G1
p − G1 − 2�1 − e−G1��1

2� , �A5�

G2 = G2 + ��G2
p − G2 − 2�1 − e−G2��2

2� . �A6�

We demand that �1, �2, G1, and G2 be strictly positive;
then from Eq. �A1�,

cos����1 − r2eG1+G2� = 0,

which gives two branches of solutions: �1� r2eG1+G2 =1 and
�2� cos���=0. Substituting the first expression into Eqs.
�A2�–�A4� yields

�1 = �2, �A7�

sin��� =
r�eG1 − eG2�

2 tan p
. �A8�

But since �sin�����1 and p�1, then �eG1 −eG2��2 tan p /r
�1. On the other hand, from Eqs. �A5�–�A7� one finds that
G1=G2 if and only if G1

p=G2
p, whence the solution is

� = 0,�, �1 = �2 =�Gp + ln r

2�1 − r�
, G1 = G2 = − ln r .

This solution exists only for small �G1
p−G2

p�, and we can
introduce a small parameter �= �G1

p−G2
p� /2�1+2rI�, so that

� = arcsin��/tan p� + O��2� ,

�1
2 = �2

2 = I + O��2� ,

G1 = G0 + � + O��2� ,

G2 = G0 − � + O��2� , �A9�

where I= �Gp−G0� /2�1−r�, Gp= �G1
p+G2

p� /2, and G0=−ln r.
Meanwhile, the branch of solutions in region C of Fig. 1

is given by �for zero detuning�

� = ±
�

2
,

�1 =�G1
p − G0

2�1 − r� �1 �
p

2
�G2

p − G0

G1
p − G0

	 1

G1
p − G0

+
r

1 − r

�

+ O�p2� ,

�2 =�G2
p − G0

2�1 − r� �1 ±
p

2
�G1

p − G0

G2
p − G0

	 1

G2
p − G0

+
r

1 − r

�

+ O�p2� ,

G1 = G0 ± p�G2
p − G0

G1
p − G0

+ O�p2� ,

G2 = G0 � p�G1
p − G0

G2
p − G0

+ O�p2� ,

with the first-order correction to the phase difference given
by

� = ±
�

2
± 2q

��G1
p − G0��G2

p − G0�
G2

p − G1
p .

2. Coupling matrix

To determine the coupling matrix Snm for arrays �i.e.,
N
2�, we integrated the equation
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dEn

dz
= iAnmEm,

where z is the spatial coordinate along the fiber,
Anm=�n�nm+C�dnm�, and dnm is the distance between the
centers of the nth and mth fibers. Integrating over the total
coupling length zc yields En�z=zc�=SnmEm�z=0�. Typically,
we take the nearest-neighbor coupling

C�dnm� = �0 if dnm 
 2R ,

� if dnm = 2R ,
�

where R is the radius of each fiber. Our results are essentially
unchanged for other functions C�dnm� provided they decay
fast enough.
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